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Abstract
Simple nanometric structures enabling the multiplexing and cross-talk transfer
of acoustic waves are presented. Such structures are constructed out of two
monomode discrete cluster chains and two other clusters situated in between
these chains. The clusters interact with one another through the elastic
deformation of the substrate on which they are deposited, through the well
known energy of interaction between two elastic dipoles. We assume that the
cluster mass density is greater than that of the substrate and that the interactions
between the clusters are smaller than the corresponding interactions in the
substrate. With these assumptions, we may assume that a branch of acoustic
waves localized along the chain of clusters exists below the surface Rayleigh
wave branch. We show analytically that this simple structure can transfer with
selectivity and in one direction one acoustic wavelength from one chain to the
other, leaving neighbour acoustic wavelengths unaffected. We give closed form
relations enabling us to obtain the values of the relevant physical parameters
needed for this multiplexing phenomenon to happen at a chosen wavelength.
Finally we illustrate this general theory with an application.

The directional transfer from one waveguide to another has been considered before for elastic
waves in macroscopic slender tubes [1] and wires [2] and for optical phonons in atomic
chains [3]. Such transfer processes are particularly important in wavelength multiplexing and
in telecommunication routing devices [4–7].

A device enabling a directional transfer of an elastic wave of a given wavelength from
one wire to the other should let the other neighbour wavelengths travel without perturbation
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Figure 1. Sketch of the geometry of the nanometric multiplexer considered. It consists of two
cluster chains and two other clusters of mass M bound to the substrate by a harmonic force constant
K ′. They are bound also among themselves by a harmonic force constant β2 and to clusters (1–4) by
harmonic force constants β1. These force constants are due to the interaction between the clusters
due to the elastic dipoles created by the deformations of the substrate. We consider one input I1 or
two inputs I1 = I2 of out-of-plane acoustic waves and four outputs O1, O2, O3 and O4.

in the input wire. At the same time this wave of one selected and well defined wavelength is
expected to be transferred to the other wire with a phase shift as the only admitted distortion.
To meet the above requirements as closely as possible an appropriate coupling geometry should
be designed.

In the present paper we describe a nanometric device system which, under certain
conditions, makes possible the directional transfer of one acoustic wave with a very good
selectivity and directivity. The system is depicted in figure 1. This system is from a physical
point of view different from the ones proposed before, as it uses nanoclusters rather than
atoms [3] or macroscopic bodies and springs [2]. Here the interactions between the nanoclusters
are those between the elastic dipoles created by the deformations of the substrate on which the
nanoclusters are adsorbed. Indeed it is well known that when a body of mass m is deposited on
a substrate, its weight causes a deformation of the surface of this substrate and then an elastic
dipole force. Such substrate mediated interactions occur between any kinds of nanoclusters
adsorbed on any kinds of substrates [8]. So in the device proposed in this paper substrate
existence is required, although similar devices [2] without a substrate could be created with
macroscopic bodies. We will therefore give here only a simple general solution for such a
cross-talk device, leaving the choice of specific materials to the experimentalists interested
in constructing and testing such a nanometric cross-talk device. Let us be precise that the
mathematical derivations of the transmission coefficients for this new physical system are
similar to ones given before [3]. This approach uses Green’s functions and is equivalent to those
of the scattering matrix. Therefore we will give here directly the solutions for the nanometric
system considered here.

The structure consists of two cluster chains conducting predominantly the out-of-plane
transverse waves. The chains go respectively through points (1, 2) and (3, 4) and two additional
clusters of mass M are at points 5 and 6. The distances between points (1, 2) and (3, 4)
are Ld , where L = 1, 2, 3, . . .. The chains are characterized by the cluster mass m and the
nearest neighbour force constant β related to these transverse vibrations of the chain. This force
constant can be obtained as the second derivative of the central energy of interaction between
the two elastic dipoles due to the deformation of the substrate. This interaction energy is well
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known to be inversely proportional to the distance d3 between the two clusters [8]. The two
identical clusters of mass M are assumed to be coupled to the motionless support by a force
constant K ′. These clusters are also coupled with each other by a force constant β2 inversely
proportional to d5

2 , where d2 is the distance between these two clusters. The coupling of the
wave motion in the cluster chains with the motion of the clusters of mass M is ensured by four
harmonic force constants β1, inversely proportional to d5

1 , where d1 is the distance between
clusters (5, 6) and the clusters (1–4); see figure 1. The system shows two perpendicular mirror
symmetry planes. So the main parameters of this model are the ratios β1/β and β2/β of the
force constants or equivalently d1/d and d2/d of the cluster distances, together with the ratios
K ′/β and M/m. Moreover the simple system presented here can be solved in closed form.
This enables us to determine all the parameters necessary for its design by electron lithography
for example on a given substrate.

The dispersion relation of the localized transverse modes of the cluster chains is assumed
to be [9]

mω2 = 2β(1 − cos kd), (1)

where ω is the angular frequency and k the propagation vector.
We assumed that the chain clusters are only weakly bound to the substrate and that the

influence of this coupling can be neglected in the above dispersion relation, at least for kd
smaller than π/2. This assumption is mostly realistic for clusters physisorbed on the substrate
surface. In general and especially in the cases of chemisorption, one can expect a phonon
dispersion relation more complicated than the one given by equation (1). However in the long
wavelength limit (kd small) the realistic dispersion relation can be matched to one given by this
equation via an appropriate choice of β .

In general any incident wave intensity I1(kd) = 1 launched onto the coupling structure,
e.g., from the input gate 1, generates, as a result of the scattering processes, the outgoing
acoustic wave intensities O j (kd), j = 1, 2, 3, 4 (cf figure 1). The corresponding analytical
expressions were given before and illustrated with an application for optical phonons [3].

Here also for these acoustic phonons the total phonon transfer from the input 1 to the
output 3, i.e. O1 = 0, O2 = 0, O3 = 1 and O4 = 0, can be realized exactly at the angular
frequency ω0. This frequency and the force constants β , β1, and β2 then should fulfil the
following conditions:

Mω2
0 = K ′ + 2β1 + β2, (2)

cos(k0Ld) = − β2

2β1
, (3)

and
sin(k0Ld)

sin(k0d)
= ββ2

β2
1

, (4)

where k0 is the value of k for ω = ω0 in equation (1).
The transferred wave has some width in kd around k0d . If one wishes the corresponding

peak in O3(kd) to be symmetric, then one obtains another condition [1, 3], namely

Lk0d = (1 + 4n0)
π

2
, n0 = 0, 1, 2, . . . . (5)

However this condition and the ones given by equations (3) and (4) are only fulfilled for
β1 = 0 and β2 = 0. So in what follows we will tolerate a small dissymmetry of the peak in
O3(kd) and a small imprecision on the condition given by equation (5). This is easily managed
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by adding a small quantity ε to the right-hand side of equation (5) and then calculating β2/β ,
β1/β and K ′/β as a function of this ε.

Let us also define the quality factor associated with the bandwidth of the transferred signal
by

Q(k0d) = k0d

�(k0d)
, (6)

where �(k0d) is the width of this signal for O3(kd) = 0.5.
An approximated value of this quality factor is found to be

Q(k0d) = (1 + 4n0)
π

L

M

m

β

β2
sin

[
(1 + 4n0)

π

2L

]
. (7)

One can notice that for big values of d2, β2 may become very small and then the quality
factor Q(k0d) will be very big. However in all physical systems some loss mechanisms exist
which would prevent the experimental detection of a too high quality peak. This should be
taken into account before trying and choosing precise parameters for an experience.

Let us stress also that such a device is expected to work for the whole range of acoustic
waves.

To give an illustrative and at the same time realistic example complying with the above
assumptions we consider n0 = 0, L = 1, β1/β = 0.2, β2/β = 0.04, m = M , K ′/β = 1.
When the influence of the force constants binding the chain clusters to the substrate on the
dispersion relation of the chain phonons can be neglected, we can use the 1/d5 proportionality
between the force constants and the cluster separation distance d and obtain an estimation for
the distances d1/d = 1.38 and d2/d = 1.90. This set of parameters is realistic and could be
used for any type of material and any size of the clusters, as long as the clusters are weakly
bound to the substrate. If that is not the case, one can recalculate, using the above equations,
other parameters for an acoustic phonon transfer in a smaller frequency range, where ω is
proportional to k.

Figure 2 presents the transmission coefficients O3(kd) (solid line), O2(kd) (dashed line),
O4(kd) (dotted line) and O1(kd) (dotted–dashed line) as a function of the reduced wavevector
kd . One remarks that the dissymmetry with respect to kd = π/2 is negligible. The peak in
the transmission coefficient O3(kd) shows a width at half-maximum of the order predicted by
equation (7). In this figure O2(kd) is basically constant and equal to 1 after the dip due to the
transfer. This result comes from the parameters used in this calculation, but remains for other
possible parameter sets as long as the analytical conditions given above are satisfied with a
good precision and the chosen quality factor is not too low.

Now with two inputs of intensity I1(kd) = I2(kd) = 1 at gates 1 and 2, by linear
superpositions of the amplitudes the output transmission probabilities can also be obtained [2].

In other words, two transverse acoustic waves of particular propagation vector k0 are
cross-transferred through the structure to gates 3 and 4, respectively. This ‘cross-talk’ effect
is illustrated in figure 3 for the same parameters as were used in figure 2.

The results of the present paper show that the simple structure presented here can
realize transverse acoustic wave multiplexing and also cross-transfer of two acoustic waves,
respectively from gate 1 to gate 3 and from gate 2 to gate 4. Moreover, the above derived
closed form expressions enable us to find easily the optimal parameters for the desired device,
enabling us to engineer it at will for specific applications. Although this system does not need
to be nanometric in order to operate, it is particularly well adapted for nanoscale technologies.
Indeed deposition of nanoclusters on different kinds of substrates is of current interest for such
technologies. This system could be excited by surface wave techniques, as is done currently in
many telecommunication devices [10].
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Figure 2. The transmission coefficients O3(kd) (solid line), O2(kd) (dashed line), O4(kd) (dotted
line) and O1(kd) (dotted–dashed line) as a function of kd for n0 = 0, L = 1, β1/β = 0.2,
β2/β = 0.04, m = M, K ′/β = 1 with one single input I1 = 1.
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Figure 3. Output signal intensities O1(kd) = O2(kd) (dashed line) and O3(kd) = O4(kd)

(solid line) as a function of kd for the same parameters as in figure 2 when two inputs of intensity
I1(kd) = I2(kd) = 1 at gates 1 and 2 are simultaneously present.

In this paper, we assumed that an appropriate acoustic transducer may excite only ‘out-
of-plane’ transverse phonons in the cluster chain. We neglected the mode conversion of
phonons which may appear within the cross-talk device. This should be addressed in future
investigations. We try mostly to stress that with the help of nanoclusters, it is possible to
construct such simple nanometric cross-talk devices.
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